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Abstract

Rationale: Multiciliated cell (MCC) loss and/or dysfunction is
common in the small airways of patients with chronic obstructive
pulmonary disease (COPD), but it is unclear if this contributes
to COPD lung pathology.

Objectives: To determine if loss of p73 causes a COPD-like
phenotype in mice and explore whether smoking or COPD
impact p73 expression.

Methods: p73floxE7–E9 mice were crossed with Shh-Cre mice to
generate mice lacking MCCs in the airway epithelium. The
resulting p73Dairway mice were analyzed using electron microscopy,
flow cytometry, morphometry, forced oscillation technique, and
single-cell RNA sequencing. Furthermore, the effects of cigarette
smoke on p73 transcript and protein expression were examined
using in vitro and in vivo models and in studies including airway
epithelium from smokers and patients with COPD.

Measurements and Main Results: Loss of functional p73 in
the respiratory epithelium resulted in a near-complete absence of
MCCs in p73Dairway mice. In adulthood, these mice spontaneously
developed neutrophilic inflammation and emphysema-like lung
remodeling and had progressive loss of secretory cells. Exposure
of normal airway epithelium cells to cigarette smoke rapidly
and durably suppressed p73 expression in vitro and in vivo.
Furthermore, tumor protein 73 mRNA expression was reduced in
the airways of current smokers (n= 82) compared with former
smokers (n= 69), and p73-expressing MCCs were reduced in the
small airways of patients with COPD (n= 11) compared with
control subjects without COPD (n= 12).

Conclusions: Loss of functional p73 in murine airway
epithelium results in the absence of MCCs and promotes
COPD-like lung pathology. In smokers and patients with COPD,
loss of p73 may contribute to MCC loss or dysfunction.
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Chronic obstructive pulmonary disease
(COPD) is a common and often fatal
disorder associated with long-term exposure
to cigarette smoke (CS) or other inhaled
irritants (1). Mucus plugging is common in
the small airways of patients with COPD
with or without chronic bronchitis and
contributes to disease-defining airflow
obstruction (2, 3). Although mucus plugging
is believed to primarily result frommucus
hypersecretion from goblet cell hyperplasia
(4), reduced numbers of multiciliated cells
(MCCs) and defects in cilia length and
function have been described in smokers
and patients with COPD (5–14) and may
contribute to defects in mucociliary clearance
in these groups (15–18). Through the
metachronal beating of their cilia, MCCs
normally move mucus and particles
entrapped in mucus from small to large
airways, where they are then expectorated
(19). Thus, loss or impairment of MCCs
may contribute to inadequate mucociliary
clearance andmucus plugging in COPD.
However, little is known regarding the
mechanisms of MCC dysfunction in smokers
or patients with COPD or the downstream
consequences of MCC loss.

p73 (tumor protein 73) is a member
of the p53 family of sequence-specific
transcription factors (p53, p63, and p73) with

known roles in regulating the cell cycle,
apoptosis, cell–cell junctions, wound healing,
DNA repair, and cellular differentiation
(20–24). Studies using p73 null (p732/2)
mice led to the discovery that p73 is
expressed inMCCs and a subset of basal cells
and is required for MCC development
(25–28). Mice lacking p73 have a nearly
complete absence of MCCs throughout the
body andmany resulting phenotypes,
including chronic infection and
inflammation of the lungs and sinuses and
substantial postnatal mortality (26, 27, 29).
Similar phenotypes are observed in humans
with homozygous loss-of-function mutations
in human tumor protein 73 (TP73) (30).
However, it is unknown if p73 contributes to
MCC loss or dysfunction in smokers or
patients with COPD or if loss of p73 in the
airways specifically contributes to COPD
pathogenesis.

Here, we generatedmice lacking p73
in the airway epithelium to study the impact
ofMCC loss on lung pathology in vivo.
We foundmice lacking p73 in the airways
have a near-complete loss ofMCCs and
spontaneously develop emphysema-like
parenchymal remodeling, chronic neutrophilic
inflammation, and progressive loss of
SCGB1A11 (Secretoglobin family 1Amember
1) secretory cells. In addition, we show that CS
suppresses p73 expression in vitro and in vivo
and that p73 is reduced in the airways of
smokers and patients with COPD. Together,
these data suggest CS-mediated loss of p73
may contribute to COPD-relevant phenotypes,
includingMCC loss/dysfunction, neutrophilic
inflammation, and emphysema-like lung
remodeling, and secretory cell loss, and
may continue in patients with COPD after
smoking cessation. Some of the results of
these studies have been previously reported
in the form of abstracts (31, 32).

Methods

Oversight
Institutional Animal Care and Use
Committee approval. All mouse experiments
were performed according to protocols
approved by the Institutional Animal Care
and Use Committee at Vanderbilt University
Medical Center (Institutional Animal Care
and Use Committee #V1800148 and
M1800069-00).

Institutional review board approval.
The explanted lungs of patients with COPD
undergoing lung transplantation were

obtained after informed consent according to
an institutional review board (IRB)-approved
protocol from Vanderbilt University Medical
Center (IRB #060165). Control samples were
obtained from deceased organ donors and
exempted from IRB review. Available clinical
and demographic information for human-
derived samples is provided in Table E1 in
the online supplement.

p73Dairway mouse model. The
p73floxE7–E9 model has been previously
described (26). For these experiments,
p73floxE7–E9 mice were backcrossed a
minimum of seven generations onto a
C57Bl6/J background. To generate p73Dairway

mice, p73floxE7–E9 mice were bred to mice
constitutively expressing Cre recombinase
driven by the Sonic hedgehog locus (strain
#005622, The Jackson Laboratory) (33) to
generate C57Bl6/J mice lacking full-length p73
in the airway epithelium. For all experiments,
controls consisted of age-matched littermates
homozygous for the p73floxE7–E9 allele but not
expressing Cre recombinase.

Data availability. Single-cell RNA
sequencing (scRNA-seq) data from p73Dairway

mice will be available in the Gene Expression
Omnibus database under GSE240096.
Transcriptional data on airway brushings
used in our in silico analyses are available at
GSE37147 (34) and https://data.mendeley.
com/datasets/7r2cwbw44m/1) (35).

Results

Targeted p73 Deletion in the Airways
Results in MCC Loss, Emphysema-
like Parenchymal Remodeling, and
Neutrophilic Inflammation
To investigate the impact of p73 deletion in
the respiratory epithelium, we bred mice
with loxP sites flanking exons 7–9 of Trp73
(p73floxE7–E9 mice) (26) to Shh-Cre mice.
The resulting Cre1 progeny, which we
termed p73Dairway mice, had complete loss of
full-length Trp73 expression in the lungs but
continued to produce a truncated version
of p73 protein, which has previously been
shown to be functionally inactive (26)
(Figures E1A and E1B). However, there was
also a slight reduction in full-length p73 in
the skin and a total loss of full-length p73 in
the esophagus, suggesting that loss of p73 is
not entirely specific to the airway epithelium
in this model (Figure E1B). However, apart
frommild runting (Figure E1C), 6-month-
old p73Dairway mice lacked many of the
systemic phenotypes previously observed

At a Glance Commentary

Scientific Knowledge on the
Subject: p73 is a transcription
factor required for multiciliated cell
(MCC) differentiation. To better
understand if the loss of MCCs
contributes to lung pathology in
chronic obstructive pulmonary
disease (COPD), we generated
mice lacking p73 in the
respiratory epithelium.

What This Study Adds to the
Field: Loss of p73 in the airways
results in multiple COPD-relevant
phenotypes, including loss of MCCs
and secretory cells, neutrophilic
inflammation, and emphysema-like
lung remodeling. Furthermore, p73
is suppressed by cigarette smoke
in vitro and in vivo and is reduced
in the airways of smokers and
patients with COPD.
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in p732/2 mice (26, 27), such as reduced
fertility and postnatal lethality. p73Dairway

mice did not develop overt pneumonitis
(Figure 1A) but had a structurally abnormal
epithelium characterized by flattened,
dysmorphic epithelial cells and areas of
basement membrane without overlying
epithelium (Figure 1B). Immunostaining for
the MCCmarker acetylated a-tubulin
(*a-tubulin) indicated a near-complete
absence of MCCs in the airways of p73Dairway

mice (Figure 1C). Transmission electron
microscopy confirmed the loss of MCCs and
indicated p73Dairway mice also have abnormal
cell–cell junctions and a general loss of
polarity, including abnormally positioned
nuclei and secretory organelles (Figure 1D).

Low-magnification images of the lung
parenchyma of 6-month-old p73Dairway

mice indicated possible emphysema-like
remodeling (Figure 1A). To evaluate this
further, we quantified emphysema using

mean linear intercept and forced oscillation
technique. We found that by 6 months of
age, p73Dairway mice had an increase in mean
linear intercept and a reduction in tissue
elastance by forced oscillation technique,
both indicative of emphysema-like
lung remodeling (Figures 1E and 1F).
Because emphysema can be driven by
immune/inflammatory cell–derived
proteases in patients with COPD and
in COPD animal models (36, 37), we
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Figure 1. Targeted p73 deletion in the airways results in multiciliated cell (MCC) loss, emphysema-like lung remodeling, and neutrophilic
inflammation. All experiments in this figure were performed on adult (4–7 months old) p73Dairway mice and littermate control mice. (A) Low-
magnification view of lungs of p73Dairway mice shows emphysema-like lung remodeling but no overt pneumonitis. Scale bars, 100mm. (B) The
airways of p73Dairway mice contain flattened, dysmorphic epithelial cells and areas without overlying epithelial cells (black arrows). Scale bars,
100mm. (C) Representative images of immunostaining for acetylated a-tubulin (*a-tubulin) showing a near-complete absence of MCCs in the
airways of p73Dairway mice. Scale bars, 100mm. (D) TEM micrographs showing absent MCCs, loss of cell–cell junctions (yellow arrow), and
apically oriented nuclei (white arrow) in airway epithelial cells from p73Dairway mice. Scale bars, 2mm. (E) MLI in p73Dairway and littermate
control mice. n=4–5 mice/group. *P, 0.05; Mann-Whitney U test. (F) Tissue elastance (H) in p73Dairway mice and littermate control mice.
n=8 mice/group. *P,0.05; Mann-Whitney U test. (G and H) Neutrophil numbers (G) and percentage among CD451 cells (H) in the left lungs
of adult (4–7 months old) p73Dairway mice and littermate control mice. ***P,0.001; two-way ANOVA with �Sid�ak’s multiple comparison correction.
AM=alveolar macrophages; Eos=eosinophils; H&E=hematoxylin and eosin; IM= interstitial macrophages; MLI=mean linear intercept;
Mono=monocytes; Neu=neutrophils; TEM= transmission electron microscopy.
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determined if p73Dairway mice have increased
lung immune/inflammatory cells. Using
established flow cytometry protocols (38, 39)
(Figure E2A), we quantified major myeloid
and T-cell subsets in the lungs of p73Dairway

mice. We noted an approximately twofold
increase in neutrophils in the lungs of
p73Dairway mice and an increase in the
percentage of neutrophils among CD451 cells
(Figures 1G and 1H). In contrast, numbers
of other major myeloid and T-cell subsets
did not differ between p73Dairway mice and
littermate control mice, and differences in the
percentages among CD451 cells wereminor
(Figures E2B and E2C). Together, these data
indicate that p73Dairway mice have nearly a
complete absence ofMCCs in the lungs and
spontaneously develop emphysema-like lung

remodeling and neutrophilic inflammation,
with minor impacts on other immune/
inflammatory cell types.

Loss of p73 in the Airway Epithelium
Results in Progressive Loss of
SCGB1A11Secretory Cells
We next focused on the impact of p73
deletion on the airway epithelium. Light
microscopy indicated a potential reduction
in the number of cells covering the airway
basement membrane in 6-month-old
p73Dairway mice (Figure 1A). To quantify this,
we counted the number of airway epithelial
cells per 1mm basement membrane in
both young adult (2-month-old) and adult
(6-month-old) p73Dairway mice and age-matched
littermate control mice, focusing on smaller

airways that fit entirely inside a single field of
view at 200-fold magnification. The number
of DAPI1 cells per 1mm basement
membrane was reduced by 36% and 38%
in 2- and 6-month-old p73Dairway mice,
respectively (Figure 2A). Immunostaining
for SCGB1A1 in 2-month-old p73Dairway

mice and littermate control mice indicated
most of the remaining cells in the airways of
p73Dairway expressed SCGB1A1 (Figure 2B,
top panels). These cells covered most of
the airway but assumed a wider, flattened
morphology (Figure 2B, insets). In contrast,
6-month-old p73Dairway mice had extensive
areas in which no SCGB1A11 cells were
present (Figure 2B, bottom panels).
Quantification of the percentage of
SCGB1A11 cells among DAPI1 cells
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confirmed a dramatic reduction in the
percentage of SCGB1A11 cells in 6-month-
old p73Dairway mice and a more minor
reduction in the percentage of these cells in
2-month-old mice (Figure 2C).

Loss of p73 in the Airway Epithelium
Increases Cell–Cell and Cell–Basement
Membrane Gene Expression in
Scgb1a11 Cells and Reduces
Expression of microRNAs
We next examined if structural changes in
the airway epithelium of p73Dairway mice
were accompanied by changes in gene
expression. We performed scRNA-seq on
whole lungs from six p73Dairway mice and six
littermate control mice using split-pool
ligation-based transcriptome sequencing
(40). Two-month-old mice were selected for
study, rather than 6-month-old mice, to
maximize cellular recovery, given the
dramatic reduction in airway epithelial cells
in 6-month-old p73Dairway mice (Figure 2A).
After filtering out poor-quality cells (Figure
E3A and Supplemental Methods), the final
dataset included 2,100 Epcam1 (epithelial
cell adhesion molecule) cells from p73Dairway

mice and 3,809 Epcam1 cells from control
mice. These were grouped by gene
expression using unsupervised, graph-based
clustering (Leiden), manually annotated
based on expression of canonical markers
(Figure E3B) and visualized by Uniform
Manifold Approximation and Projection
(Figure 3A). As expected, there were few
mature MCCs or club cells in p73Dairway mice
(Figure 3B). TheMCCs that remained
expressed Trp73 (Figure 3C) and were
transcriptionally similar toMCCs from
control mice (Figure 3D), suggesting they
escaped Cre recombinase activity. In the
alveolar epithelium, gene expression was
similar between p73Dairway mice and control
mice. There were no differentially expressed
genes (DEGs) for alveolar type I (AT1) and
transitional alveolar type II (AT2) cells and
just 22 DEGs for immature AT2s and 62
DEGs for mature AT2s (Figure 3D).
Significant DEGs for all cell types are
provided in Table E2.

We next focused on potential mechanisms
of SCGB1A11 cell loss using our scRNA-seq
data. Club, goblet, and bronchioalveolar stem
cells (BASC)-like cells all expressed varying
amounts of Scgb1a1 (Figure E3B). Although
gene expression in club and goblet cells was
similar between p73Dairway mice and control
mice (Figure 3D), there were 197 DEGs
between BASC-like cells from p73Dairway mice

and control mice.We then calculated DEGs
among all Scgb1a11 secretory cell populations
combined for p73Dairway and control mice and
performed pathway analyses on the
calculated DEGs using Enrichr (41). In
p73Dairway mice, Scgb1a11 cells were
enriched in pathways related to cell–cell and
cell–basement membrane attachment,
including focal adhesions, extracellular
matrix (ECM)–receptor interactions,
regulation of the actin cytoskeleton, adherens
junctions, and tight junctions (Figure 3E).
These changes were driven by widespread
upregulation in integrin, laminin, collagen,
and other attachment genes (Figure 3F). We
did not observe an increase in genes related
to senescence or apoptosis, and there was no
terminal deoxynucleotidyl transferase dUTP
nick end labeling staining, a marker of
apoptosis, in p73Dairway mice or control
mice (Figure E4). Taken together, these data
indicate that, in mice, loss of p73 in the
airway epithelium has modest effects on
the alveolar niche but results in upregulation
of genes associated with cell–cell and cell–
basement membrane attachment on the
remaining secretory cell populations. Despite
upregulation in attachment genes, however,
SCGB1A11 cells are lost over time.

Because microRNAs (miRNAs) in the
miR-34/449 family have been shown to play
critical roles in multiciliogenesis in mice (42),
we also investigated miRNA expression in
p73Dairway mice and littermate control mice.
We pooled EPCAM-enriched epithelial cells
isolated from the lungs of two 6-month-old
p73Dairway mice and compared miRNA
expression to pooled cells from two age-
matched littermate control mice. We noted
a marked global reduction in small RNAs,
including miRNAs, in p73Dairway mice
(Figures E5A and E5B). The top 10 most
highly expressed miRNAs were shared
between p73Dairway mice and control mice,
arguing against large shifts in the overall
composition of miRNAs. However, we did
note reduced expression of some miRNAs
associated with multiciliogenesis, particularly
miR-34c-5p (839 reads per million in control
mice vs. 77 reads per million in p73Dairway

mice), which could have contributed to
reduced multiciliogenesis in these mice.
The fold-change values for all miRNAs
tested are available in Table E3.

CS Exposure Reduces p73
Expression In Vitro and In Vivo
Chronic exposure to tobacco smoke is a
common cause of COPD, particularly in

higher-income countries (43), and has
known detrimental effects onMCC function
and cilia length (5, 6, 8, 9, 11–13). Therefore,
we determined the effect of CS on p73
expression in vitro and in vivo. To determine
the effects of acute CS exposure, we treated
differentiated murine tracheal epithelial cells
(MTECs) with 2.5% CS extract (CSE) or
2.5% vehicle (phosphate-buffered saline,
PBS) for 0.5–24hours and performed
immunofluorescent staining for p73 and
*a-tubulin. Both p73 and *a-tubulin
expression were decreased as early as
30minutes after CSE exposure and remained
reduced until 24 hours after exposure
(Figures 4A and 4B). Because p63 (tumor
protein 63) is an important regulator of basal
cell function (44) and has substantial
sequence homology with p73 (45), we also
assessed p63 protein abundance across the
same time course of CSE treatment (Figure
4C). We observed a slight increase in p63
expression above baseline in PBS-treated
controls (Figure 4D). However, p63
expression was markedly increased above
baseline and above PBS-treated controls in
CSE-treated cells after 0.5 and 1hour before
returning to baseline at 4 hours (Figure 4D).

We next evaluated the relationship
between CS exposure and p73 expression in
human cells in a subacute model by exposing
primary human small airway epithelial cells
(HSAECs) to mainstream CS once daily for
5days. To accomplish this, we adapted the
SIU24 in vivo CS system (Promech) for
in vitro use in air–liquid interface culture
(Figure 4E). In this model, TP73was
significantly reduced after 1 day of CS
exposure and remained reduced after 5days
of treatment (Figure 4F). HSAECs (passage 5)
exposed to CS had a trend toward decreased
TP63 expression 1day after exposure, which
returned to baseline after 5days of exposure
(Figure 4G). Together, these data indicate
acute or subacute exposure to CS suppresses
TP73 expression in vitro and that p73 and
p63 respond differently to CS exposure.

To determine the effect of chronic CS
exposure on p73 abundance in vivo, we
treated wild-type C57Bl6/J mice with
mainstream CS for 1 or 3 months and
measured p73 expression in murine
bronchioles by immunostaining. We noted
reductions in numbers of p731 , a-tubulin1,
and FOXJ11 cells after 1 and 3 months of CS
exposure (Figure 5A). Furthermore, we
measured Trp73 expression in whole-lung
lysates by qRT-PCR after 1week, 1 month,
and 3 months of CS exposure and found
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Figure 3. Loss of p73 in the airway epithelium increases cell–cell and cell–basement membrane gene expression in Scgb1a11 cells. (A) UMAP
colored by annotated cell type (left panel) or genotype (right panel). (B) Proportion of each cell type originating from p73Dairway or control mice.
(C) Feature plot showing Trp73 expression in MCCs from p73Dairway and control mice. (D) Number of significant differentially expressed genes
(DEGs) between p73Dairway and control mice for each cell type. Significance was defined as .0.25-fold expression and adjusted P value, 0.05
(Wilcoxon rank sum test) in genes expressed in at least 25% of the cells in the cluster. (E) Pathways enriched among DEGs in Scgb1a11 cells
from p73Dairway and control mice (KEGG 2019 mouse). (F) Venn diagram showing genes that contributed to the focal adhesion, ECM–receptor
interaction, and actin cytoskeleton pathways in E. AT1 = alveolar type I; AT2=alveolar type II; BASC=bronchioalveolar stem cells; ECM=extracellular
matrix; MCCs=multiciliated cells; PNEC=pulmonary neuroendocrine cells; UMAP=Uniform Manifold Approximation and Projection.
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Figure 4. Acute cigarette smoke suppresses p73 expression in vitro. (A) Murine tracheal epithelial cells (MTECs) were differentiated in
air–liquid interface (ALI) culture and then treated with 2.5% cigarette smoke exposure (CSE) or 2.5% phosphate-buffered saline (PBS) (control).
Representative immunostaining for p73 (red) and acetylated a-tubulin (*a-tubulin) (green) in both groups at the indicated time points.
(B) Quantification of p731 cells in 12 fields of view for each time point shown in A. ****P,0.00001 compared with CSE-treated cells at the same
time point; Student’s t test. (C) Representative immunostaining for p63 (red) in MTECs treated with 2.5% CSE or 2.5% PBS (control) at
the indicated time points. (D) Quantification of p631 cells in 12 fields of view for each time point shown in C. ****P, 0.00001 compared with
CSE-treated cells at the same time point; Student’s t test. (E) Adaptation of the SIU24 in vivo cigarette smoke machine for in vitro use. The
apical side of human small airway epithelial cells (HSAECs) in ALI culture was exposed to mainstream cigarette smoke by lifting the top of
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significantly reduced expression at each time
point (Figure 5B). Similarly, Foxj1 (forkhead
box protein J1) was significantly reduced
after 1week and 3 months of exposure
(Figure 5C). These data indicate chronic CS
treatment reduces p73 expression and
downstreamMCCmarkers in vivo.

p73 Is Reduced in the Airways of
Smokers and Former Smokers
with COPD
Because p73 is a critical mediator ofMCC
development (26, 27) and was reduced by CS
in vitro and in vivo, we hypothesized that
MCC loss/dysfunction in smokers would be
associated with p73 loss in human airway
epithelial cells. To test this, we analyzed
publicly available datasets that included
annotation of smoking status. In a dataset
consisting of bulk RNA-sequencing on
bronchial brushings (GSE37147) (34), we

found reduced expression of TP73 in current
smokers (n=82) compared with former
smokers (n=69) (Figure E6A). To investigate
how smoking affects TP73mRNA expression
inMCCs specifically, we examinedMCCs
from smokers (n=96 cells) and nonsmokers
(n=2,499 cells), all without known
respiratory disease, in an existing scRNA-seq
dataset (35) (Figure E6B). Expression of
FOXJ1was significantly decreased inMCCs
from current smokers, whereas TP73 and
other markers of early ciliogenesis
(CCDC78,MYB) trended toward reduced
expression inMCCs from smokers (Figure
E6C). Together, these data suggest that
smoking reduces TP73 and other factors
associated with ciliogenesis in human lungs.

Because MCCs are reduced in patients
with COPD after smoking cessation (14),
we also investigated if p73 expression is
attenuated in small (,2mm) airways of

patients with COPD.We immunostained
small airways from COPD lung explants
(all former smokers) and deceased organ
donors without known lung disease whose
lungs were rejected for transplantation
(control subjects) for p73 and the canonical
basal cell marker p63 (Table E1 and
Figure 6A). p631 cells were increased in
patients with COPD (Figure 6B). In contrast,
the percentage of p731MCCs among all
DAPI1 airway epithelial cells was reduced
from 42% in control small airways to 24% in
COPD airways (Figure 6B). Furthermore, the
percentage of p631 and p731 cells decreased
from 13% in control small airways to 9% in
COPD small airways (Figure 6B). Together,
these data indicate p731 cells are reduced in
COPD airways, and despite their sequence
homology there are divergent changes in
p631 and p731 cells in the small airways of
patients with COPD.
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Figure 5. Chronic cigarette smoke (CS) exposure suppresses p73 expression in vivo. (A) Representative immunostaining for p73 (red) and
acetylated a-tubulin (*a-tubulin) (green, left panel) and FoxJ1 (green, right panel) in mice exposed to mainstream CS for 1 or 3 months and
unexposed control mice. All immunostaining and micrographs were taken at the same time with the same exposure settings. Data represent
quantification of at least three fields of view from three or four inserts performed in triplicate (e.g., a minimum of 27 fields of view per time point).
(B and C) qRT-PCR analysis using primers for Trp73 (B) and Foxj1 (C) in whole-lung lysates from mice exposed to mainstream cigarette smoke
for 1 or 3 months and unexposed control mice. *P, 0.05, **P,0.01, and ***P,0.001; two-way ANOVA with Tukey’s multiple corrections test.
ns=not significant.

Figure 4. (Continued ). the cell culture plate. Medium was changed immediately after each exposure to minimize smoke exposure to the
basolateral side of each insert. (F) TP73 or (G) TP63 expression was measured by qRT-PCR in HSAECs treated with mainstream CS for 1 or
5 days. *P,0.05; Kruskal-Wallis test with Dunn’s multiple comparison correction. ns=not significant; WCS=whole cigarette smoke.
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Discussion

Reduced numbers of MCCs and defects
in cilia length and function are well-
documented in smokers and patients with
COPD (5–10, 12–14). Furthermore, smoking
is associated with reduced mRNA expression
of genes related toMCC differentiation and
structure (8, 11, 46). Here we show that p73
is reduced in the small airways of smokers
and patients with COPD, is suppressed by
CS in vitro and in vivo, and is sufficient to
generate COPD-relevant phenotypes in
mice, including neutrophilic inflammation,
emphysema-like lung remodeling, and
progressive loss of secretory cells. Collectively,
our results suggest p73 provides a mechanistic
link between smoking and/or airway
inflammation and reducedMCC function
and suggest loss of p73 may contribute to
lung pathology in smokers and patients
with COPD.

We discovered that mice lacking
functional p73 in the airway epithelium have
nearly a complete absence of MCCs and
spontaneously develop neutrophilic
inflammation and emphysema-like lung
remodeling. These results are consistent
with the well-established relationship
between neutrophil-derived proteases and
emphysema in COPD animal models (36).
However, the specific mechanism(s) through
which loss of p73 drives neutrophilic
accumulation require additional investigation.

We observed areas of exposed basement
membrane in aged p73Dairway mice and
increased expression of ECM genes in
younger mice, similar to that previously
observed in skin in p732/2 mice (24).
Degradation of ECM components releases
bioactive fragments called matrikines,
which are potent neutrophil chemotactic
factors (47) and could contribute to
neutrophilic inflammation in p73Dairway

mice. Furthermore, although we did not
observe activation of inflammatory signaling
pathways in the epithelium of 2-month-old
p73Dairway mice, it is possible that progressive
loss of barrier function in older p73Dairway

mice prompts release of neutrophil
chemotactic factors by airway epithelial
cells. This loss of barrier function could
relate to a general loss of cells covering the
airway or a specific loss of secretory cells,
which are known to be critical regulators of
airway homeostasis (48). Finally, many
effects could be the direct result of loss of
ciliated cells and impaired mucociliary
clearance in these mice.

Loss of secretory cells and secretory cell
products is increasingly recognized as an
important contributor to COPD pathology
(48). We observed a reduced percentage of
SCGB1A11 secretory cells in p73Dairway mice,
which worsened as these mice aged. This
finding was unexpected, because p73 is not
expressed in secretory cells in mice (26).
Furthermore, secretory cell loss appeared to

occur despite upregulation of genes related to
cell–cell and cell–basement membrane
attachment in p73Dairway mice. It is possible
that, over time, attempts by secretory cells
to adhere to the basement membrane
begin to fail, resulting in secretory cell loss.
Alternatively, it is possible that the
proliferative capacity of secretory cells
diminishes over time as they continually
divide in an attempt to cover the epithelium.
Finally, it is important to note that secretory
cell loss also occurred with aging in control
(wild-type) mice, which could occur through
shared or distinct mechanisms to p73Dairway

mice. Additional time course experiments
will be required to more fully define the
mechanisms of secretory cell loss in
p73Dairway and control mice and to determine
whether these mechanisms are also true in
humans, given species-specific differences in
the distribution of Scgb1a11 cells between
humans andmice.

We found that CS suppressed p73
in vitro and in vivo and that p73 was reduced
in bronchial brushings from smokers. Prior
studies in mice indicate p73 coordinates
a transcriptional program required for
ciliogenesis through direct binding and
activation of MCC genes, including the
transcription factors Cdkn1a,Myb, Rfx3,
Traf3ip1, and the canonicalMCC transcription
factor Foxj1 (26). Thus, CS-mediated loss
of p73 could explain the well-documented
reduction in genes associated with ciliogenesis
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Figure 6. p731 cells are reduced and p631 cells are increased in the airways of patients with chronic obstructive pulmonary disease (COPD).
(A) Representative images of immunostaining for p73 (red), p63 (green), and DAPI (blue) in small (,2mm) airways from patients with COPD
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in smokers and the observation that
overexpression of FOXJ1 rescues
CS-induced defects in cilia in vitro (11, 46).
Whether loss of p73 impacts mucociliary
clearance in vivo and whether restoration of
p73 rescues impairments inMCC function
in vivo are important topics for future study.
In addition, it would be interesting to
induce goblet cell hyperplasia in p73Dairway

mice to determine if loss of MCC function
directly contributes to formation of mucus
plugs in this model.

Prior studies indicate that p73 expression
is dynamic and context dependent. Ultraviolet
radiation, cisplatin, paclitaxel, doxorubicin,
and sorbitol have all been shown to
upregulate p73 by increasing expression of
TP73, enhancing the stability of p73 protein,
or both (49, 50). In contrast, nuclear factor-
kB (NF-kB) pathway activation increases
ubiquitination and proteasomal degradation
of p73 and inhibits p73 activity through
NF-kB–mediated expression of Mdm2
(51, 52). CS is a complex stimulus with
wide-ranging and cell-specific effects on
gene expression in the airway epithelium
(53). Thus, there could be species (mouse vs.
human), location (small vs. large airways),
and model-specific differences in CS-
mediated p73 loss, and additional studies
will be required to clarify these mechanisms.
Nonetheless, the consistency with which CS
suppresses p73 across multiple model
systems suggests a robust relationship.

We previously reported that p732/2

mice have reduced numbers of p631 basal
cells in the trachea. In contrast, we observed

increased numbers of p631 basal cells in
COPD small airways, despite reduced
numbers of p731 cells. Despite their
structural similarities (45), p73 and p63
have different functions and different
mechanisms of regulation. Indeed, we
observed divergence in the response of
these two transcription factors to acute CS
exposure in MTECs. Additional studies will
be required to understand the differential
regulation of p63 and p73 in response to CS
and in COPD. In addition, it is important to
note that although basal cell hyperplasia has
previously been reported in COPD, it is not
uniform across all studies (14, 54) and may
differ depending on the stage of COPD being
studied and the composition of the control
group (never-smokers, former smokers, etc.).
Finally, although our studies suggest that
p631 and p731 basal cells are present in both
COPD and control airways, we do not
provide functional characterization of these
cells, and it is unclear whether they continue
to have the pluripotency typical of basal cells
or are restricted to anMCC fate.

Our study has several important
limitations. First, we used a constitutive Cre
model, and it is possible that loss of p73
during lung development contributed to
the pathologic phenotypes described. In
addition, Cre recombinase activity was not
entirely limited to the airway epithelium in
our model, and it is possible that loss of p73
in other tissues contributed to the observed
phenotypes. However, these mice lacked
many of the phenotypes that make p732/2

mice difficult to study, including perinatal

lethality and reduced fertility. Third, our
experimental design did not allow us to
distinguish phenotypes resulting from the
loss of p73 specifically from phenotypes
resulting from the loss of ciliated cells.
Fourth, although we showed that CS
suppressed p73 in HSAECs and in murine
small airways, our in silico analysis was
performed on gene expression data obtained
from large airway brushings. Thus, it
remains unknown whether CS suppresses
p73 expression in human small airways.

In summary, we report that loss of p73
is common in the airways of patients with
COPD and smokers, that CS suppresses p73
in vitro and in vivo, and that mice lacking
p73 spontaneously develop a COPD-like
phenotype. Thus, p73 may link smoking and
COPD toMCC dysfunction and contribute
to COPD lung pathology.�
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